Definition:Piecewise Continuous Function/Bounded

From ProofWiki
Jump to: navigation, search

Definition

Let $f$ be a real function defined on a closed interval $\left[{a \,.\,.\, b}\right]$.


$f$ is a bounded piecewise continuous function if and only if:

there exists a finite subdivision $\left\{{x_0, x_1, \ldots, x_n}\right\}$ of $\left[{a \,.\,.\, b}\right]$, where $x_0 = a$ and $x_n = b$, such that:
$(1): \quad$ for all $i \in \left\{{1, 2, \ldots, n}\right\}$, $f$ is continuous on $\left({x_{i − 1} \,.\,.\, x_i}\right)$
$(2): \quad$ $f$ is bounded on $\left[{a \,.\,.\, b}\right]$.


Also see