Definition:Polygonal Number/Examples
Definition
Triangular Numbers
When $k = 3$, the recurrence relation is:
- $\forall n \in \N: T_n = \map P {3, n} = \begin {cases} 0 & : n = 0 \\ \map P {3, n - 1} + \paren {n - 1} + 1 & : n > 0 \end {cases}$
where $\map P {k, n}$ denotes the $k$-gonal numbers.
See Triangular Number.
Square Numbers
When $k = 4$, the recurrence relation is:
- $\forall n \in \N: S_n = \map P {4, n} = \begin{cases} 0 & : n = 0 \\ \map P {4, n - 1} + 2 \paren {n - 1} + 1 & : n > 0 \end{cases}$
where $\map P {k, n}$ denotes the $k$-gonal numbers.
See Square Number.
Square numbers are of course better known as:
- $S_n = n^2$
Pentagonal Numbers
When $k = 5$, the recurrence relation is:
- $\forall n \in \N: P_n = \map P {5, n} = \begin {cases} 0 & : n = 0 \\ \map P {5, n - 1} + 3 \paren {n - 1} + 1 & : n > 0 \end {cases}$
where $\map P {k, n}$ denotes the $k$-gonal numbers.
See Pentagonal Number.
Hexagonal Numbers
When $k = 6$, the recurrence relation is:
- $\forall n \in \N: H_n = \map P {6, n} = \begin{cases} 0 & : n = 0 \\ \map P {6, n - 1} + 4 \paren {n - 1} + 1 & : n > 0 \end{cases}$
where $\map P {k, n}$ denotes the $k$-gonal numbers.
See Hexagonal Number.
Heptagonal Numbers
When $k = 7$, the recurrence relation is:
- $\forall n \in \N: H_n = \map P {7, n} = \begin{cases} 0 & : n = 0 \\ \map P {7, n - 1} + 5 \paren {n - 1} + 1 & : n > 0 \end{cases}$
where $\map P {k, n}$ denotes the $k$-gonal numbers.
See Heptagonal Number.
Octagonal Numbers
When $k = 8$, the recurrence relation is:
- $\forall n \in \N: O_n = \map P {8, n} = \begin{cases} 0 & : n = 0 \\ \map P {8, n - 1} + 6 \paren {n - 1} + 1 & : n > 0 \end{cases}$
where $\map P {k, n}$ denotes the $k$-gonal numbers.
See Octagonal Number.