Definition:Primitive Recursion/Several Variables

From ProofWiki
Jump to navigation Jump to search


Let $f: \N^k \to \N$ and $g: \N^{k + 2} \to \N$ be functions.

Let $\tuple {n_1, n_2, \ldots, n_k} \in \N^k$.

Then the function $h: \N^{k + 1} \to \N$ is obtained from $f$ and $g$ by primitive recursion if and only if:

$\forall n \in \N: \map h {n_1, n_2, \ldots, n_k, n} = \begin {cases} \map f {n_1, n_2, \ldots, n_k} & : n = 0 \\ \map g {n_1, n_2, \ldots, n_k, n - 1, \map h {n_1, n_2, \ldots, n_k, n - 1} } & : n > 0 \end {cases}$