# Definition:Propositional Function/Examples

Jump to navigation
Jump to search

## Examples

Let the universe be the set of integers $\Z$.

Let $\map P x$ be the propositional function defined as:

- $x$ is even

Then we can insert particular values of $x \in \Z$, for example, as follows:

\(\displaystyle \map P 1\) | \(=\) | \(\displaystyle \F\) | |||||||||||

\(\displaystyle \map P 2\) | \(=\) | \(\displaystyle \T\) | |||||||||||

\(\displaystyle \map P {591}\) | \(=\) | \(\displaystyle \F\) |

Thus $\map P x$ is a **unary propositional function** (pronounced **yoo-nary**).

$\Box$

Let $\map P {x, y}$ be the propositional function defined as:

- $x$ is less than $y$

Then we can create the propositional statements:

\(\displaystyle \map P {1, 2}\) | \(=\) | \(\displaystyle \T\) | |||||||||||

\(\displaystyle \map P {2, 1}\) | \(=\) | \(\displaystyle \F\) | |||||||||||

\(\displaystyle \map P {3, 3}\) | \(=\) | \(\displaystyle \F\) |

Thus $\map P {x, y}$ is a **binary propositional function** .

$\Box$

Let $\map P {x, y, z}$ be the propositional function defined as:

- $x$ is between $y$ and $z$.

Then:

\(\displaystyle \map P {1, 2, 3}\) | \(=\) | \(\displaystyle \F\) | |||||||||||

\(\displaystyle \map P {2, 1, 3}\) | \(=\) | \(\displaystyle \T\) | |||||||||||

\(\displaystyle \map P {5, 4, 3}\) | \(=\) | \(\displaystyle \F\) |

Thus $\map P {x, y, z}$ is a **ternary propositional function** .

$\Box$