Definition:Propositional Function/Examples
Jump to navigation
Jump to search
Examples
Let the universe be the set of integers $\Z$.
Let $\map P x$ be the propositional function defined as:
- $x$ is even
Then we can insert particular values of $x \in \Z$, for example, as follows:
\(\ds \map P 1\) | \(=\) | \(\ds \F\) | ||||||||||||
\(\ds \map P 2\) | \(=\) | \(\ds \T\) | ||||||||||||
\(\ds \map P {591}\) | \(=\) | \(\ds \F\) |
Thus $\map P x$ is a unary propositional function (pronounced yoo-nary).
$\Box$
Let $\map P {x, y}$ be the propositional function defined as:
- $x$ is less than $y$
Then we can create the propositional statements:
\(\ds \map P {1, 2}\) | \(=\) | \(\ds \T\) | ||||||||||||
\(\ds \map P {2, 1}\) | \(=\) | \(\ds \F\) | ||||||||||||
\(\ds \map P {3, 3}\) | \(=\) | \(\ds \F\) |
Thus $\map P {x, y}$ is a binary propositional function .
$\Box$
Let $\map P {x, y, z}$ be the propositional function defined as:
- $x$ is between $y$ and $z$.
Then:
\(\ds \map P {1, 2, 3}\) | \(=\) | \(\ds \F\) | ||||||||||||
\(\ds \map P {2, 1, 3}\) | \(=\) | \(\ds \T\) | ||||||||||||
\(\ds \map P {5, 4, 3}\) | \(=\) | \(\ds \F\) |
Thus $\map P {x, y, z}$ is a ternary propositional function .
$\Box$