Definition:Spectrum of Locale/Frame Homomorphisms

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\struct{L, \vee, \wedge, \preceq}$ be a locale.


Let $\map {\operatorname{pt}} L$ denote the set of points as frame homomorphisms of $L$, that is:

$\map {\operatorname{pt}} L$ is the set of frame homomorphisms $h : L \to \mathbf 2$

where $\struct{\mathbf 2, \vee, \wedge, \neg, \preceq}$ denotes the (Boolean lattice) two


For each $a \in L$, let:

$\Sigma_a = \set{h \in \map {\operatorname{pt}} L : \map h a = \top}$


The spectrum of $L$, denoted $\map {\operatorname{Sp}} L$, is the topological space $\struct{\map {\operatorname{pt}} L, \set{\Sigma_a : a \in L}}$


Also see

Sources