Definition:Square Root/Complex Number/Definition 1
Jump to navigation
Jump to search
Definition
Let $z \in \C$ be a complex number expressed in polar form as $\polar {r, \theta} = r \paren {\cos \theta + i \sin \theta}$.
The square root of $z$ is the $2$-valued multifunction:
\(\ds z^{1/2}\) | \(=\) | \(\ds \set {\sqrt r \paren {\map \cos {\frac {\theta + 2 k \pi} 2} + i \map \sin {\frac {\theta + 2 k \pi} 2} }: k \in \set {0, 1} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \set {\sqrt r \paren {\map \cos {\frac \theta 2 + k \pi} + i \map \sin {\frac \theta 2 + k \pi} }: k \in \set {0, 1} }\) |
where $\sqrt r$ denotes the positive square root of $r$.
Also see
Sources
![]() | There are no source works cited for this page. Source citations are highly desirable, and mandatory for all definition pages. Definition pages whose content is wholly or partly unsourced are in danger of having such content deleted. To discuss this page in more detail, feel free to use the talk page. |