Definition:Stable Under Group Action

From ProofWiki
Jump to navigation Jump to search

Definition

Let $G$ be a group.

Let $X$ be a set.

Let $\phi : G \times X \to X$ be a group action.

Let $S \subset X$ be a subset of $X$.


Then $S$ is stable (under $\phi$) if and only if:

$\map \phi {G \times S} \subset S$