Definition:Stable Under Group Action
Jump to navigation
Jump to search
Definition
Let $G$ be a group.
Let $X$ be a set.
Let $\phi : G \times X \to X$ be a group action.
Let $S \subset X$ be a subset of $X$.
Then $S$ is stable (under $\phi$) if and only if:
- $\map \phi {G \times S} \subset S$