Definition:Summation/Historical Note

From ProofWiki
Jump to navigation Jump to search

Historical Note on Summation

The notation $\sum$ for a summation was famously introduced by Joseph Fourier in $1820$:

Le signe $\displaystyle \sum_{i \mathop = 1}^{i \mathop = \infty}$ indique que l'on doit donner au nombre entier $i$ toutes les valeurs $1, 2, 3, \ldots$, et prendre la somme des termes.
(The sign $\displaystyle \sum_{i \mathop = 1}^{i \mathop = \infty}$ indicates that one must give to the whole number $i$ all the values $1, 2, 3, \ldots$, and take the sum of the terms.)
-- 1820: Refroidissement séculaire du globe terrestre (Bulletin des Sciences par la Société Philomathique de Paris Vol. 3, 7: 58 – 70)


However, some sources suggest that it was in fact first introduced by Euler.


Sources