Definition:Surjective on Morphisms
Jump to navigation
Jump to search
Definition
Let $\mathbf C$ and $\mathbf D$ be metacategories.
Let $F: \mathbf C \to \mathbf D$ be a functor.
Then $F$ is said to be surjective on morphisms if and only if:
- For every morphism $g$ of $\mathbf D$, there is a morphism $f$ of $\mathbf C$ such that $F f = g$
Also see
Sources
- 2010: Steve Awodey: Category Theory (2nd ed.): Chapter $7$ Naturality: $\S 7.1$ Category of Categories: Definition $7.1$