Definition:Symmetry Group of Equilateral Triangle
Jump to navigation
Jump to search
Group Example
Let $\triangle ABC$ be an equilateral triangle.
We define in cycle notation the following symmetries on $\triangle ABC$:
\(\ds e\) | \(:\) | \(\ds \tuple A \tuple B \tuple C\) | Identity mapping | |||||||||||
\(\ds p\) | \(:\) | \(\ds \tuple {ABC}\) | Rotation of $120 \degrees$ anticlockwise about center | |||||||||||
\(\ds q\) | \(:\) | \(\ds \tuple {ACB}\) | Rotation of $120 \degrees$ clockwise about center | |||||||||||
\(\ds r\) | \(:\) | \(\ds \tuple {BC}\) | Reflection in line $r$ | |||||||||||
\(\ds s\) | \(:\) | \(\ds \tuple {AC}\) | Reflection in line $s$ | |||||||||||
\(\ds t\) | \(:\) | \(\ds \tuple {AB}\) | Reflection in line $t$ |
Note that $r, s, t$ can equally well be considered as a rotation of $180 \degrees$ (in $3$ dimensions) about the axes $r, s, t$.
Then these six operations form a group.
This group is known as the symmetry group of the equilateral triangle.
Cayley Table
- $\begin{array}{c|ccc|ccc} \circ & e & p & q & r & s & t \\ \hline e & e & p & q & r & s & t \\ p & p & q & e & s & t & r \\ q & q & e & p & t & r & s \\ \hline r & r & t & s & e & q & p \\ s & s & r & t & p & e & q \\ t & t & s & r & q & p & e \\ \end{array}$
Cycle Notation
It can also be presented in cycle notation as:
\(\ds e\) | \(:=\) | \(\ds \text { the identity mapping}\) | ||||||||||||
\(\ds p\) | \(:=\) | \(\ds \tuple {1 2 3}\) | ||||||||||||
\(\ds q\) | \(:=\) | \(\ds \tuple {1 3 2}\) |
\(\ds r\) | \(:=\) | \(\ds \tuple {2 3}\) | ||||||||||||
\(\ds s\) | \(:=\) | \(\ds \tuple {1 3}\) | ||||||||||||
\(\ds t\) | \(:=\) | \(\ds \tuple {1 2}\) |
Also see
- Symmetry Group of Equilateral Triangle is Group
- Symmetry Group of Equilateral Triangle is Symmetric Group
- Results about the symmetry group of the equilateral triangle can be found here.
Sources
- 1966: Richard A. Dean: Elements of Abstract Algebra ... (previous) ... (next): $\S 1.3$: Example $9$
- 1971: Allan Clark: Elements of Abstract Algebra ... (previous) ... (next): Chapter $2$: The Definition of Group Structure: $\S 26 \eta$
- 1978: Thomas A. Whitelaw: An Introduction to Abstract Algebra ... (previous) ... (next): $\S 34$. Examples of groups: $(5)$
- 1982: P.M. Cohn: Algebra Volume 1 (2nd ed.) ... (previous) ... (next): $\S 3.2$: Groups; the axioms: Examples of groups $\text{(iv)}$
- 1996: John F. Humphreys: A Course in Group Theory ... (previous) ... (next): Chapter $1$: Definitions and Examples: Example $1.9$