Definition:Trimorphic Number

From ProofWiki
Jump to navigation Jump to search

Definition

An trimorphic number is a positive integer whose cube ends in that number.


Sequence of Trimorphic Numbers

The sequence of trimorphic numbers begins:

\(\displaystyle 1^3\) \(=\) \(\displaystyle 1\)
\(\displaystyle 4^3\) \(=\) \(\displaystyle 64\)
\(\displaystyle 5^3\) \(=\) \(\displaystyle 125\)
\(\displaystyle 6^3\) \(=\) \(\displaystyle 216\)
\(\displaystyle 9^3\) \(=\) \(\displaystyle 729\)
\(\displaystyle 24^3\) \(=\) \(\displaystyle 13 \, 824\)
\(\displaystyle 25^3\) \(=\) \(\displaystyle 15 \, 625\)
\(\displaystyle 49^3\) \(=\) \(\displaystyle 117 \, 649\)
\(\displaystyle 51^3\) \(=\) \(\displaystyle 132 \, 651\)
\(\displaystyle 75^3\) \(=\) \(\displaystyle 421 \, 875\)
\(\displaystyle 76^3\) \(=\) \(\displaystyle 438 \, 976\)
\(\displaystyle 99^3\) \(=\) \(\displaystyle 970 \, 299\)
\(\displaystyle 125^3\) \(=\) \(\displaystyle 1 \, 953 \, 125\)
\(\displaystyle 249^3\) \(=\) \(\displaystyle 15 \, 438 \, 249\)


Also see

  • Results about trimorphic numbers can be found here.


Sources