Definition:Valuation Ring

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\left({D, +, \circ}\right)$ be a integral domain.

Let $K$ be the field of fractions of $D$.

Let $K$ be such that:

for all $x \in K$, either $x \in D$ or $x^{-1} \in D$.


Then $D$ is a valuation ring of $K$.