Definition:Vector Space of Germs of Smooth Functions

From ProofWiki
Jump to navigation Jump to search

Definition

Let $M$ be a smooth manifold with or without boundary.

Let $p \in M$.

Let $\GG_p$ denote the set $\map {C_p^\infty} M$ of all germs of smooth functions at $p$.

Let $\sqbrk f_p \in \GG_p$ denote the germ of $f$ at $p$ where $f$ is a smooth function.


Then $\struct {\GG_p, +_p, \cdot_p}_\R$ is a vector space over $\R$, in which the operations:

$+_p: \GG_p \times \GG_p \to \GG_p$
$\cdot_p: \R \times \GG_p \to \GG_p$

are defined as:

vector addition:      \(\ds \forall \sqbrk f_p, \forall \sqbrk g_p \in \GG_p:\)    \(\ds \sqbrk f_p +_p \sqbrk g_p \)   \(\ds := \)   \(\ds \sqbrk {f + g}_p \)      
scalar multiplication:      \(\ds \forall c \in \R: \forall \sqbrk f_p \in \GG_p:\)    \(\ds c \cdot_p \sqbrk f_p \)   \(\ds := \)   \(\ds \sqbrk {c f}_p \)      

where:

$f + g$ denote the pointwise addition of functions;
$c f$ denote the pointwise scalar multiplication of functions.





Also see


Sources