Definition:Woodall Prime/Sequence

From ProofWiki
Jump to navigation Jump to search

Sequence

The sequence $\sequence n$ for which $n \times 2^n - 1$ is a prime number begins:

$2, 3, 6, 30, 75, 81, 115, 123, 249, 362, 384, 462, 512, 751, \ldots$

This sequence is A002234 in the On-Line Encyclopedia of Integer Sequences (N. J. A. Sloane (Ed.), 2008).


The first few of these correspond with the sequence $\sequence n$ of the actual Woodall primes themselves, which begins:

$7, 23, 383, 32212254719, 2833419889721787128217599, 195845982777569926302400511, \ldots$

This sequence is A050918 in the On-Line Encyclopedia of Integer Sequences (N. J. A. Sloane (Ed.), 2008).


Sources