Definition:Zero Mapping/Distribution

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\map \DD \R$ be the test function space.

Let $\mathbf 0 \in \map {\DD'} \R$ be a distribution.

Suppose:

$\forall \phi \in \map \DD \R : \map {\mathbf 0} \phi = 0$


Then $\mathbf 0$ is referred to as the zero distribution.