Derivative of Composite Function/Examples/(3x+1)^2

From ProofWiki
Jump to navigation Jump to search

Example of Derivative of Composite Function

$\map {\dfrac \d {\d x} } {\paren {3 x + 1}^2} = 6 \paren {3 x + 1}$


Proof

Let $u = 3 x + 1$.

Let $y = u^2$.

Then we have:

$y = \paren {3 x + 1}^2$

and so:

\(\ds \dfrac {\d y} {\d x}\) \(=\) \(\ds \dfrac {\d y} {\d u} \dfrac {\d u} {\d x}\) Derivative of Composite Function
\(\ds \) \(=\) \(\ds 2 u \cdot 3\) Derivative of Square Function, Derivative of Identity Function: Corollary
\(\ds \) \(=\) \(\ds 6 \paren {3 x + 1}\) simplification

$\blacksquare$


Sources