Derivative of Exponential at Zero/Proof 3
Jump to navigation
Jump to search
Theorem
Let $\exp x$ be the exponential of $x$ for real $x$.
Then:
- $\ds \lim_{x \mathop \to 0} \frac {\exp x - 1} x = 1$
Proof
\(\ds \frac {e^x - 1} x\) | \(=\) | \(\ds \frac {e^x - e^0} x\) | Exponential of Zero | |||||||||||
\(\ds \) | \(\to\) | \(\ds \valueat {\dfrac \d {\d x} e^x} {x \mathop = 0} {}\) | Definition of Derivative of Real Function at Point, as $x \to 0$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \valueat {e^x} {x \mathop = 0} {}\) | Derivative of Exponential Function | |||||||||||
\(\ds \) | \(=\) | \(\ds 1\) | Exponential of Zero |
$\blacksquare$