Derivative of Generating Function/General Result/Corollary

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\map G z$ be the generating function for the sequence $\sequence {a_n}$.

Let $m$ be a positive integer.

Let the coefficient of $z^n$ extracted from $\map G z$ be denoted:

$\sqbrk {z^n} \map G z := a_n$

Then:

$\sqbrk {z^m} \map G z = \dfrac 1 {m!} \map {G^{\paren m} } 0$

where $G^{\paren m}$ denotes the $m$th derivative of $G$.


Proof

\(\ds \dfrac {\d^m} {\d z^m} \map G z\) \(=\) \(\ds \sum_{k \mathop \ge 0} \dfrac {\paren {k + m}!} {k!} a_{k + m} z^k\) Derivative of Generating Function: General Result
\(\ds \) \(=\) \(\ds \dfrac {m!} {0!} a_m + \sum_{k \mathop \ge 1} \dfrac {\paren {k + m}!} {k!} a_{k + m} z^k\)
\(\ds \) \(=\) \(\ds m! a_m + \sum_{k \mathop \ge 1} \dfrac {\paren {k + m}!} {k!} a_{k + m} z^k\) Factorial of Zero
\(\ds \leadsto \ \ \) \(\ds \map {G^{\paren m} } 0\) \(=\) \(\ds m! a_m\)
\(\ds \leadsto \ \ \) \(\ds \dfrac 1 {m!} \map {G^{\paren m} } 0\) \(=\) \(\ds a_m\)

$\blacksquare$