Derivative of Hyperbolic Sine/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\map {\dfrac \d {\d x} } {\sinh x} = \cosh x$


Proof

\(\ds \map {\frac \d {\d x} } {\sinh x}\) \(=\) \(\ds \map {\frac \d {\d x} } {\dfrac {e^x - e ^{-x} } 2}\) Definition of Hyperbolic Sine
\(\ds \) \(=\) \(\ds \frac 1 2 \paren {\map {\frac \d {\d x} } {e^x} - \map {\frac \d {\d x} } {e^{-x} } }\) Linear Combination of Derivatives
\(\ds \) \(=\) \(\ds \frac 1 2 \paren {e^x - \paren {-e^{-x} } }\) Derivative of Exponential Function, Chain Rule for Derivatives
\(\ds \) \(=\) \(\ds \frac {e^x + e^{-x} } 2\) simplification
\(\ds \) \(=\) \(\ds \cosh x\) Definition of Hyperbolic Cosine

$\blacksquare$