Derivative of Identity Function/Complex
Jump to navigation
Jump to search
Theorem
Let $I_\C: \C \to \C$ be the identity function.
Then:
- $\map {I_\C'} z = 1$
Corollary
- $\map {\dfrac {\d} {\d x} } {c x} = c$
where $c$ is a constant.
Proof
The identity function is defined as $\forall x \in \C: \map {I_\C} z = z$.
Thus:
\(\ds \map {I_\C'} z\) | \(=\) | \(\ds \lim_{h \mathop \to 0} \frac {\map {I_\C} {z + h} - \map {I_\C} z} h\) | Definition of Derivative of Complex Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{h \mathop \to 0} \frac {\paren {z + h} - z} h\) | Definition of Identity Mapping | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{h \mathop \to 0} \frac h h\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1\) |
$\blacksquare$