Derivative of Identity Function/Real
Jump to navigation
Jump to search
Theorem
Let $I_\R: \R \to \R$ be the identity mapping on the real numbers $\R$.
Then:
- $\map {I_\R'} x = 1$
Proof
The identity mapping is defined as:
- $\forall x \in \R: \map {I_\R} x = x$
Thus:
\(\ds \map {I_\R'} x\) | \(=\) | \(\ds \lim_{\delta x \mathop \to 0} \frac {\map {I_\R} {x + \delta x} - \map {I_\R} x} {\delta x}\) | Definition of Derivative of Real Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{\delta x \mathop \to 0} \frac {\paren {x + \delta x} - x} {\delta x}\) | Definition of Identity Mapping | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{\delta x \mathop \to 0} \frac {\delta x} {\delta x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1\) |
$\blacksquare$