Derivatives of Function of a x + b

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $f$ be a real function which is differentiable on $\R$.

Let $a, b \in \R$ be constants.


Then:

$\map {\dfrac {\d^n} {\d x^n} } {\map f {a x + b} } = a^n \map {\dfrac {\d^n} {\d z^n} } {\map f z}$

where $z = a x + b$.


Proof

Proof by induction:

For all $n \in \N_{>0}$, let $\map P n$ be the proposition:

$\map {\dfrac {\d^n} {\d x^n} } {\map f {a x + b} } = a^n \map {\dfrac {\d^n} {\d z^n} } {\map f z}$

where $z = a x + b$.


Basis for the Induction

$P(1)$ is the case:.

$\map {\dfrac \d {\d x} } {\map f {a x + b} } = a \map {\dfrac \d {\d z} } {\map f z}$

where $z = a x + b$.

This is proved in Derivative of Function of Constant Multiple: Corollary.

This is our basis for the induction.


Induction Hypothesis

Now we need to show that, if $\map P k$ is true, where $k \ge 1$, then it logically follows that $\map P {k + 1}$ is true.


So this is our induction hypothesis:

$\map {\dfrac {\d^k} {\d x^k} } {\map f {a x + b} } = a^k \map {\dfrac {\d^n} {\d z^k} } {\map f z}$

where $z = a x + b$.


Then we need to show:

$\map {\dfrac {\d^{k + 1} } {\d x^{k + 1} } } {\map f {a x + b} } = a^{k + 1} \map {\dfrac {\d^{k + 1} } {\d z^{k + 1} } } {\map f z}$

where $z = a x + b$.


Induction Step

This is our induction step:

\(\ds \map {\dfrac {\d^{k + 1} } {\d x^{k + 1} } } {\map f {a x + b} }\) \(=\) \(\ds \map {\dfrac \d {\d x} } {\map {\dfrac {\d^k} {\d x^k} } {\map f {a x + b} } }\) Definition of Higher Derivative
\(\ds \) \(=\) \(\ds \map {\dfrac \d {\d x} } {a^k \map {\dfrac {\d^k} {\d z^k} } {\map f z} }\) Induction Hypothesis
\(\ds \) \(=\) \(\ds a^k \map {\dfrac \d {\d x} } {\map {\dfrac {\d^k} {\d z^k} } {\map f z} }\) Derivative of Constant Multiple
\(\ds \) \(=\) \(\ds a^k \cdot a \map {\dfrac \d {\d z} } {\map {\dfrac {\d^k} {\d z^k} } {\map f z} }\) Basis of the Induction
\(\ds \) \(=\) \(\ds a^{k + 1} \map {\dfrac \d {\d z} } {\map {\dfrac {\d^k} {\d z^k} } {\map f z} }\)

So $\map P k \implies \map P {k + 1}$ and the result follows by the Principle of Mathematical Induction.


Therefore:

$\map {\dfrac {\d^n} {\d x^n} } {\map f {a x + b} } = a^n \map {\dfrac {\d^n} {\d z^n} } {\map f z}$

where $z = a x + b$.

$\blacksquare$