Destructive Dilemma/Formulation 1/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds p \implies q\) \(\) \(\ds \)
\(\ds r \implies s\) \(\) \(\ds \)
\(\ds \vdash \ \ \) \(\ds \neg q \lor \neg s \implies \neg p \lor \neg r\) \(\) \(\ds \)


Proof

By the tableau method of natural deduction:

$p \implies q, r \implies s \vdash \neg q \lor \neg s \implies \neg p \lor \neg r$
Line Pool Formula Rule Depends upon Notes
1 1 $p \implies q$ Premise (None)
2 2 $r \implies s$ Premise (None)
3 1, 2 $\paren {p \land r} \implies \paren {q \land s}$ Sequent Introduction 1, 2 Praeclarum Theorema
4 4 $\neg q \lor \neg s$ Assumption (None)
5 4 $\neg \paren {q \land s}$ Sequent Introduction 4 De Morgan's Laws: Disjunction of Negations
6 1, 2, 4 $\neg \paren {p \land r}$ Modus Tollendo Tollens (MTT) 3, 5
7 1, 2 $\neg p \lor \neg r$ Sequent Introduction 6 De Morgan's Laws: Disjunction of Negations
8 1, 2 $\neg q \lor \neg s \implies \neg p \lor \neg r$ Rule of Implication: $\implies \II$ 4 – 7 Assumption 4 has been discharged

$\blacksquare$