Determinant of Rescaling Matrix/Corollary

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbf A$ be a square matrix of order $n$.

Let $\lambda$ be a scalar.

Let $\lambda \mathbf A$ denote the scalar product of $\mathbf A$ by $\lambda$.


Then:

$\map \det {\lambda \mathbf A} = \lambda^n \map \det {\mathbf A}$

where $\det$ denotes determinant.


Proof

For $1 \le k \le n$, let $e_k$ be the elementary row operation that multiplies row $k$ of $\mathbf A$ by $\lambda$.

By definition of the scalar product, $\lambda \mathbf A$ is obtained by multiplying every row of $\mathbf A$ by $\lambda$.

That is the same as applying $e_k$ to $\mathbf A$ for each of $k \in \set {1, 2, \ldots, n}$.

Let $\mathbf E_k$ denote the elementary row matrix corresponding to $e_k$.

By Determinant of Elementary Row Matrix: Scale Row:

$\map \det {\mathbf E_k} = \lambda$

Then we have:

\(\ds \lambda \mathbf A\) \(=\) \(\ds \prod_{k \mathop = 1}^n \mathbf E_k \mathbf A\)
\(\ds \leadsto \ \ \) \(\ds \map \det {\lambda \mathbf A}\) \(=\) \(\ds \map \det {\prod_{k \mathop = 1}^n \mathbf E_k \mathbf A}\)
\(\ds \) \(=\) \(\ds \paren {\prod_{k \mathop = 1}^n \map \det {\mathbf E_k} } \map \det {\mathbf A}\) Determinant of Matrix Product
\(\ds \) \(=\) \(\ds \paren {\prod_{k \mathop = 1}^n \lambda} \map \det {\mathbf A}\) Determinant of Elementary Row Matrix: Scale Row
\(\ds \) \(=\) \(\ds \lambda^n \map \det {\mathbf A}\)

$\blacksquare$


Sources