Digamma Function of One Third/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\map \psi {\dfrac 1 3} = -\gamma - \dfrac 3 2 \ln 3 - \dfrac \pi {2 \sqrt 3}$


Proof

\(\ds \sum_{k \mathop = 1}^{n - 1} \map \psi {\frac k n}\) \(=\) \(\ds -\paren {n - 1} \gamma - n \ln n\) Digamma Additive Formula: Corollary
\(\ds \leadsto \ \ \) \(\ds \sum_{k \mathop = 1}^{3 - 1} \map \psi {\frac k 3}\) \(=\) \(\ds -\paren {3 - 1} \gamma - 3 \ln 3\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \map \psi {\frac 1 3} + \map \psi {\frac 2 3}\) \(=\) \(\ds -2 \gamma - 3 \ln 3\)
\(\text {(2)}: \quad\) \(\ds \map \psi {\frac 1 3} - \map \psi {\frac 2 3}\) \(=\) \(\ds -\pi \map \cot {\frac \pi 3}\) Digamma Reflection Formula
\(\ds \leadsto \ \ \) \(\ds 2 \map \psi {\frac 1 3}\) \(=\) \(\ds -2 \gamma - 3 \ln 3 - \pi \map \cot {\frac \pi 3}\) adding lines $1$ and $2$
\(\ds \leadsto \ \ \) \(\ds \map \psi {\frac 1 3}\) \(=\) \(\ds -\gamma - \dfrac 3 2 \ln 3 - \dfrac \pi {2 \sqrt 3}\) dividing by $2$ and Cotangent of $60 \degrees$

$\blacksquare$