Dilogarithm of Minus One

From ProofWiki
Jump to navigation Jump to search

Theorem

$\map {\Li_2} {-1} = -\dfrac 1 2 \map \zeta 2$


where:

$\map {\Li_2} x$ is the dilogarithm function of $x$
$\map \zeta 2$ is the Riemann $\zeta$ function of $2$.


Proof

\(\ds \map {\Li_2} z\) \(=\) \(\ds \sum_{n \mathop = 1}^\infty \frac {z^n} {n^2}\) Power Series Expansion for Spence's Function
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 1}^\infty \frac {\paren {-1}^n} {n^2}\) $z := -1$
\(\ds \) \(=\) \(\ds - \map \eta 2\) Definition of Dirichlet Eta Function
\(\ds \) \(=\) \(\ds - \paren {1 - 2^{1 - 2} } \map \zeta 2\) Riemann Zeta Function in terms of Dirichlet Eta Function
\(\ds \) \(=\) \(\ds -\dfrac 1 2 \map \zeta 2\)

$\blacksquare$