Dilogarithm of One Half

From ProofWiki
Jump to navigation Jump to search

Theorem

$\map {\Li_2} {\dfrac 1 2} = \dfrac 1 2 \paren {\map \zeta 2 - \paren {\map \ln 2}^2}$


where:

$\map {\Li_2} x$ is the dilogarithm function of $x$
$\map \zeta 2$ is the Riemann $\zeta$ function of $2$.


Proof

\(\ds \map {\Li_2} z + \map {\Li_2} {1 - z}\) \(=\) \(\ds \map \zeta 2 - \map \ln z \map \ln {1 - z}\) Dilogarithm Reflection Formula
\(\ds \leadsto \ \ \) \(\ds \map {\Li_2} {\frac 1 2} + \map {\Li_2} {\frac 1 2}\) \(=\) \(\ds \map \zeta 2 - \map \ln {\frac 1 2} \map \ln {\frac 1 2}\) $z := \dfrac 1 2$
\(\ds \leadsto \ \ \) \(\ds 2 \map {\Li_2} {\frac 1 2}\) \(=\) \(\ds \map \zeta 2 - \paren {\map \ln {\frac 1 2} }^2\)
\(\ds \) \(=\) \(\ds \dfrac 1 2 \paren {\map \zeta 2 - \paren {-\map \ln 2}^2}\) Logarithm of Reciprocal and dividing by $2$
\(\ds \) \(=\) \(\ds \dfrac 1 2 \paren {\map \zeta 2 - \paren {\map \ln 2}^2}\)

$\blacksquare$