Direction Angle of 2D Vector in Terms of Arctangent
Theorem
Let $\mathbf a$ be a vector quantity embedded in a Cartesian plane $P$ expressed in component form as:
- $\mathbf a = x \mathbf i + y \mathbf j$
Let $\theta$ denote the direction of $\mathbf a$.
Then:
- $\theta = \begin{cases}
\map \arctan {\dfrac y x} & : x > 0 \\ \map \arctan {\dfrac y x} + \pi & : x < 0 \text{ and } y \ge 0 \\ \map \arctan {\dfrac y x} - \pi & : x < 0 \text{ and } y < 0 \\ \dfrac \pi 2 & : x = 0 \text{ and } y > 0 \\ -\dfrac \pi 2 & : x = 0 \text{ and } y < 0 \\ \text{undefined} & : x = 0 \text { and } y = 0 \end{cases}$
where:
- $\arctan$ denotes the real arctangent function, defined on the real interval $\openint {-\dfrac \pi 2} {\dfrac \pi 2}$
- $\theta$ is conventionally measured from the positive direction of the $x$-axis in the interval $\hointl {-\pi} \pi$.
Proof
Let $\mathbf a$ be such that one of the following holds:
- $\mathbf a$ is in Quadrant $\text{I}$ or Quadrant $\text{IV}$
- $\mathbf a$ is on the positive direction of the $x$-axis.
Then:
- $x > 0$
and:
- $-\dfrac \pi 2 < \theta < \dfrac \pi 2$
The components of $\mathbf a$ form the legs of a right triangle where:
\(\ds \tan \theta\) | \(=\) | \(\ds \frac y x\) | Definition of Tangent Function | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map \arctan {\tan \theta}\) | \(=\) | \(\ds \map \arctan {\frac y x}\) | can take arctangent of both sides as $-\dfrac \pi 2 < \theta < \dfrac \pi 2$ | ||||||||||
\(\text {(1)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds \theta\) | \(=\) | \(\ds \map \arctan {\frac y x}\) | Composite of Bijection with Inverse is Identity Mapping |
$\Box$
Let $\mathbf a$ be such that one of the following holds:
- $\mathbf a$ is in Quadrant $\text{II}$
- $\mathbf a$ is on the negative direction of the $x$-axis.
Then:
- $x < 0$
- $y \ge 0$
and:
- $\dfrac \pi 2 < \theta \le \pi$
\(\ds \tan \theta\) | \(=\) | \(\ds \frac y x\) | Definition of Tangent Function | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \tan \paren {\theta - \pi}\) | \(=\) | \(\ds \frac y x\) | Tangent Function is Periodic on Reals | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map \arctan {\tan \paren {\theta - \pi} }\) | \(=\) | \(\ds \map \arctan {\frac y x}\) | $\dfrac \pi 2 < \theta \le \pi \implies -\dfrac \pi 2 < \theta - \pi \le 0$, can take arctangent of both sides as $-\dfrac \pi 2 < \theta - \pi < \dfrac \pi 2$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \theta - \pi\) | \(=\) | \(\ds \map \arctan {\frac y x}\) | Composite of Bijection with Inverse is Identity Mapping | ||||||||||
\(\text {(2)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds \theta\) | \(=\) | \(\ds \map \arctan {\frac y x} + \pi\) | Add $\pi$ on both sides |
$\Box$
![]() | This article needs proofreading. In particular: I believe this is the better explanation If you believe all issues are dealt with, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Let $\mathbf a$ be in Quadrant $\text{III}$.
Then:
- $x < 0$
- $y < 0$
and:
- $-\pi < \theta < \dfrac {-\pi} 2$
\(\ds \tan \theta\) | \(=\) | \(\ds \frac y x\) | Definition of Tangent Function | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \tan \paren {\theta + \pi}\) | \(=\) | \(\ds \frac y x\) | Tangent Function is Periodic on Reals | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map \arctan {\tan \paren {\theta + \pi} }\) | \(=\) | \(\ds \map \arctan {\frac y x}\) | $-\pi < \theta < \dfrac {-\pi} 2 \implies 0 < \theta + \pi < \dfrac \pi 2$, can take arctangent of both sides as $-\dfrac \pi 2 < \theta + \pi < \dfrac \pi 2$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \theta + \pi\) | \(=\) | \(\ds \map \arctan {\frac y x}\) | Composite of Bijection with Inverse is Identity Mapping | ||||||||||
\(\text {(3)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds \theta\) | \(=\) | \(\ds \map \arctan {\frac y x} - \pi\) | Substract $\pi$ on both sides |
$\Box$
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Let $\mathbf a$ be on the positive direction of the $y$-axis.
Then:
- $x = 0$
- $y > 0$
Then the arctangent of $\theta$ is undefined.
We have:
\(\text {(4)}: \quad\) | \(\ds \theta\) | \(=\) | \(\ds \frac \pi 2\) |
$\Box$
Let $\mathbf a$ be on the negative direction of the $y$-axis.
Then:
- $x = 0$
- $y < 0$
Then the arctangent of $\theta$ is undefined.
We have:
\(\text {(5)}: \quad\) | \(\ds \theta\) | \(=\) | \(\ds -\frac \pi 2\) |
$\Box$
Finally, let $\mathbf a$ be the zero vector.
We have:
- $x = 0$
- $y = 0$
and hence:
\(\text {(6)}: \quad\) | \(\ds \theta\) | \(=\) | \(\ds \text {undefined}\) | Zero Vector has no Direction |
Hence, $\theta$ can be described using the following piecewise function:
\(\ds \theta\) | \(=\) | \(\ds \begin{cases}
\map \arctan {\dfrac y x} & : x > 0 \\ \map \arctan {\dfrac y x} + \pi & : x < 0 \text{ and } y \ge 0 \\ \map \arctan {\dfrac y x} - \pi & : x < 0 \text{ and } y < 0 \\ \dfrac \pi 2 & : x = 0 \text{ and } y > 0 \\ -\dfrac \pi 2 & : x = 0 \text{ and } y < 0 \\ \text{undefined} & : x = 0 \text { and } y = 0 \end{cases}\) |
from $(1)$, $(2)$, $(3)$, $(4)$, $(5)$, and $(6)$ and the cases in which they apply |
Hence the result.
$\blacksquare$
Also defined as
Some sources define the codomain as the interval $\hointr 0 {2 \pi}$.
Also known as
This piecewise function is often presented in computer languages as $\map {\text {atan2} } {y, x}$.