Discrete Category on Set is Discrete Category

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ be a set.

Let $\mathbf{Dis} \left({S}\right)$ be the discrete category on $S$.


Then $\mathbf{Dis} \left({S}\right)$ determines a unique (up to isomorphism discrete category $\mathbf{Dis} \left({S}\right)$ whose objects precisely comprise $S$.

Proof


$\blacksquare$


Sources