Distance in Pseudometric is Non-Negative

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $X$ be a set on which a pseudometric $d: X \times X \to \R$ has been imposed.


Then:

$\forall x, y \in X: \map d {x, y} \ge 0$


Proof

By definition of pseudometric, we have that:

\((\text M 1)\)   $:$     \(\ds \forall x \in A:\) \(\ds \map d {x, x} = 0 \)      
\((\text M 2)\)   $:$     \(\ds \forall x, y, z \in A:\) \(\ds \map d {x, y} + \map d {y, z} \ge \map d {x, z} \)      
\((\text M 3)\)   $:$     \(\ds \forall x, y \in A:\) \(\ds \map d {x, y} = \map d {y, x} \)      


Hence:

\(\ds \forall x, y \in X: \, \) \(\ds \map d {x, y} + \map d {y, x}\) \(\ge\) \(\ds \map d {x, x}\) Metric Space Axiom $(\text M 2)$: Triangle Inequality
\(\ds \leadsto \ \ \) \(\ds 2 \map d {x, y}\) \(\ge\) \(\ds 0\) Metric Space Axiom $(\text M 1)$ and Metric Space Axiom $(\text M 3)$
\(\ds \leadsto \ \ \) \(\ds \map d {x, y}\) \(\ge\) \(\ds 0\)

$\blacksquare$