Divisor Count of 17,796,126,877,482,329,126,052

From ProofWiki
Jump to navigation Jump to search

Example of Use of Divisor Count Function

$\map {\sigma_0} {17 \, 796 \, 126 \, 877 \, 482 \, 329 \, 126 \, 052} = 48$

where $\sigma_0$ denotes the divisor count function.


Proof

From Divisor Count Function from Prime Decomposition:

$\ds \map {\sigma_0} n = \prod_{j \mathop = 1}^r \paren {k_j + 1}$

where:

$r$ denotes the number of distinct prime factors in the prime decomposition of $n$
$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$.


We have that:

$17 \, 796 \, 126 \, 877 \, 482 \, 329 \, 126 \, 052 = 2^2 \times 3 \times 149 \times 991 \, 723 \times 10 \, 036 \, 160 \, 394 \, 373$


Thus:

\(\ds \) \(\) \(\ds \map {\sigma_0} {17 \, 796 \, 126 \, 877 \, 482 \, 329 \, 126 \, 046}\)
\(\ds \) \(=\) \(\ds \map {\sigma_0} {2^2 \times 3^1 \times 149^1 \times 991 \, 723^1 \times 10 \, 036 \, 160 \, 394 \, 373^1}\)
\(\ds \) \(=\) \(\ds \paren {2 + 1} \times \paren {1 + 1} \times \paren {1 + 1} \times \paren {1 + 1} \times \paren {1 + 1}\)
\(\ds \) \(=\) \(\ds 3 \times 2^4\)
\(\ds \) \(=\) \(\ds 48\)

$\blacksquare$