Divisor Sum of 6
Jump to navigation
Jump to search
Example of Divisor Sum of Integer
- $\map {\sigma_1} 6 = 12$
where $\sigma_1$ denotes the divisor sum function.
Proof
We have that:
- $6 = 2 \times 3$
Hence:
\(\ds \map {\sigma_1} 6\) | \(=\) | \(\ds \paren {2 + 1} \paren {3 + 1}\) | Divisor Sum of Non-Square Semiprime | |||||||||||
\(\ds \) | \(=\) | \(\ds 3 \times 4\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 2^2 \times 3\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 12\) |
$\blacksquare$
Sources
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): sigma function (sum function)