Double Angle Formula for Hyperbolic Cosine/Corollary 2
Jump to navigation
Jump to search
Corollary to Double Angle Formula for Hyperbolic Cosine
- $\cosh 2 x = 1 + 2 \sinh^2 x$
where $\cosh$ and $\sinh$ denote hyperbolic cosine and hyperbolic sine respectively.
Proof
\(\ds \cosh 2 x\) | \(=\) | \(\ds \cosh^2 x + \sinh^2 x\) | Double Angle Formula for Hyperbolic Cosine | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {1 + \sinh^2 x} + \sinh^2 \theta\) | Difference of Squares of Hyperbolic Cosine and Sine | |||||||||||
\(\ds \) | \(=\) | \(\ds 1 + 2 \sinh^2 x\) |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 8$: Hyperbolic Functions: $8.25$: Double Angle Formulas