Double Angle Formulas/Hyperbolic Sine/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\sinh 2 x = 2 \sinh x \cosh x$


Proof

\(\ds \sinh 2 x\) \(=\) \(\ds \frac 1 2 \paren {e^{2 x} - e^{-2 x} }\) Definition of Hyperbolic Sine
\(\ds \) \(=\) \(\ds \frac 1 2 \paren {e^x + e^{-x} } \paren {e^x - e^{-x} }\) Difference of Two Squares
\(\ds \) \(=\) \(\ds 2 \paren {\frac{e^x + e^{-x} } 2 \cdot \frac {e^x - e^{-x} } 2}\)
\(\ds \) \(=\) \(\ds 2 \sinh x \cosh x\) Definition of Hyperbolic Sine, Definition of Hyperbolic Cosine

$\blacksquare$