Double Angle Formulas/Tangent/Proof 3

From ProofWiki
Jump to navigation Jump to search

Theorem

$\tan 2 \theta = \dfrac {2 \tan \theta} {1 - \tan^2 \theta}$


Proof

\(\ds \frac {2 \tan \theta} {1 - \tan^2 \theta}\) \(=\) \(\ds \dfrac {2 i \dfrac {1 - e^{2 i \theta} } {1 + e^{2 i \theta} } } {1 - \paren {i \dfrac {1 - e^{2 i \theta} } {1 + e^{2 i \theta} } }^2}\) Euler's Tangent Identity
\(\ds \) \(=\) \(\ds \dfrac {2 i \paren {1 - e^{2 i \theta} } \paren {1 + e^{2 i \theta} } } {\paren {1 + e^{2 i \theta} }^2 + \paren {1 - e^{2 i \theta} }^2}\) multiplying both numerator and denominator by $\paren {1 + e^{2 i \theta} }^2$; $i$ is the imaginary unit
\(\ds \) \(=\) \(\ds \dfrac {2 i \paren {1 - e^{4 i \theta} } } {1 + 2 e^{2 i \theta} + e^{4 i \theta} + 1 - 2 e^{2 i \theta} + e^{4 i \theta} }\) Difference of Two Squares, Square of Sum, Square of Difference
\(\ds \) \(=\) \(\ds \dfrac {2 i \paren {1 - e^{4 i \theta} } } {2 + 2 e^{4 i \theta} }\) simplifying
\(\ds \) \(=\) \(\ds i \dfrac {1 - e^{4 i \theta} } {1 + e^{4 i \theta} }\) simplifying
\(\ds \) \(=\) \(\ds \tan 2 \theta\) Euler's Tangent Identity

$\blacksquare$