# Doubling the Cube/Intersection of Parabolas

Jump to navigation
Jump to search

## Theorem

The problem of Doubling the Cube can be solved by finding the intersection of two parabolas.

## Proof

This theorem requires a proof.You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{ProofWanted}}` from the code.If you would welcome a second opinion as to whether your work is correct, add a call to `{{Proofread}}` the page. |

## Historical Note

The technique for doubling the cube by finding the intersection of two parabolas was discovered by Menaechmus.

## Sources

- 1986: David Wells:
*Curious and Interesting Numbers*... (previous) ... (next): $1 \cdotp 25992 \, 10498 \, 94873 \, 16476 \ldots$ - 1997: David Wells:
*Curious and Interesting Numbers*(2nd ed.) ... (previous) ... (next): $1 \cdotp 25992 \, 10498 \, 94873 \, 16476 \ldots$