Eigenvalues of Symmetric Matrix are Real

From ProofWiki
Jump to navigation Jump to search

Corollary to Hermitian Matrix has Real Eigenvalues

Every real symmetric matrix has eigenvalues which are all real numbers.


Proof

We have that a Real Symmetric Matrix is Hermitian.

The result follows from Hermitian Matrix has Real Eigenvalues.

$\blacksquare$


Examples

Arbitrary Example

Let $\mathbf A$ be the real symmetric matrix defined as:

$\mathbf A = \begin {pmatrix} 1 & -2 & 5 \\ -1 & 6 & -1 \\ 5 & -2 & 1 \end {pmatrix}$

The eigenvalues of $\mathbf A$ are:

\(\ds \lambda_1\) \(=\) \(\ds -4\)
\(\ds \lambda_2\) \(=\) \(\ds 4\)
\(\ds \lambda_3\) \(=\) \(\ds 8\)

Their corresponding eigenvectors are:


\(\ds \mathbf v_1\) \(=\) \(\ds \begin {pmatrix} 2 \\ 0 \\ -2 \end {pmatrix}\)
\(\ds \mathbf v_2\) \(=\) \(\ds \begin {pmatrix} 1 \\ 1 \\ 1 \end {pmatrix}\)
\(\ds \mathbf v_3\) \(=\) \(\ds \begin {pmatrix} 1 \\ -1 \\ 1 \end {pmatrix}\)


Sources