Eigenvalues of Symmetric Matrix are Real
Jump to navigation
Jump to search
Corollary to Hermitian Matrix has Real Eigenvalues
Every real symmetric matrix has eigenvalues which are all real numbers.
Proof
We have that a Real Symmetric Matrix is Hermitian.
The result follows from Hermitian Matrix has Real Eigenvalues.
$\blacksquare$
Examples
Arbitrary Example
Let $\mathbf A$ be the real symmetric matrix defined as:
- $\mathbf A = \begin {pmatrix} 1 & -2 & 5 \\ -1 & 6 & -1 \\ 5 & -2 & 1 \end {pmatrix}$
The eigenvalues of $\mathbf A$ are:
\(\ds \lambda_1\) | \(=\) | \(\ds -4\) | ||||||||||||
\(\ds \lambda_2\) | \(=\) | \(\ds 4\) | ||||||||||||
\(\ds \lambda_3\) | \(=\) | \(\ds 8\) |
Their corresponding eigenvectors are:
\(\ds \mathbf v_1\) | \(=\) | \(\ds \begin {pmatrix} 2 \\ 0 \\ -2 \end {pmatrix}\) | ||||||||||||
\(\ds \mathbf v_2\) | \(=\) | \(\ds \begin {pmatrix} 1 \\ 1 \\ 1 \end {pmatrix}\) | ||||||||||||
\(\ds \mathbf v_3\) | \(=\) | \(\ds \begin {pmatrix} 1 \\ -1 \\ 1 \end {pmatrix}\) |
Sources
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): eigenvalue