Element of Group is in its own Coset
Jump to navigation
Jump to search
Theorem
Let $G$ be a group.
Let $H$ be a subgroup of $G$.
Let $x \in G$.
Left Coset
Let:
- $x H$ be the left coset of $x$ modulo $H$.
Then:
- $x \in x H$
Right Coset
Let:
- $H x$ be the right coset of $x$ modulo $H$.
Then:
- $x \in H x$