Equation of Circle/Cartesian/Formulation 2
Jump to navigation
Jump to search
Theorem
The equation:
- $A \paren {x^2 + y^2} + B x + C y + D = 0$
is the equation of a circle with radius $R$ and center $\tuple {a, b}$, where:
- $R = \dfrac 1 {2 A} \sqrt {B^2 + C^2 - 4 A D}$
- $\tuple {a, b} = \tuple {\dfrac {-B} {2 A}, \dfrac {-C} {2 A} }$
provided:
- $A > 0$
- $B^2 + C^2 \ge 4 A D$
Proof
\(\ds A \paren {x^2 + y^2} + B x + C y + D\) | \(=\) | \(\ds 0\) | ||||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds x^2 + y^2 + \frac B A x + \frac C A y\) | \(=\) | \(\ds - \frac D A\) | |||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds x^2 + 2 \frac B {2 A} x + \frac {B^2} {4 A^2} + y^2 + 2 \frac C {2 A} y + \frac {C^2} {4 A^2}\) | \(=\) | \(\ds \frac {B^2} {4 A^2} + \frac {C^2} {4 A^2} - \frac D A\) | |||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds \paren {x + \frac B {2 A} }^2 + \paren {y + \frac C {2 A} }^2\) | \(=\) | \(\ds \frac {B^2} {4 A^2} + \frac {C^2} {4 A^2} - \frac D A\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {B^2} {4 A^2} + \frac {C^2} {4 A^2} - \frac {4 A D} {4 A^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {4 A^2} \paren {B^2 + C^2 - 4 A D}\) |
This last expression is non-negative if and only if $B^2 + C^2 \ge 4 A D$.
In such a case $\dfrac 1 {4 A^2} \paren {B^2 + C^2 - 4 A D}$ is in the form $R^2$ and so:
- $\paren {x + \dfrac B {2 A} }^2 + \paren {y + \dfrac C {2 A} }^2 = \dfrac 1 {4 A^2} \paren {B^2 + C^2 - 4 A D}$
is in the form:
- $\paren {x - a}^2 + \paren {y - b}^2 = R^2$
Hence the result from Equation of Circle in Cartesian Plane: Formulation 1.
$\blacksquare$
Sources
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): circle
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): circle