Equivalence of Definitions of Lattice Filter

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {S, \vee, \wedge, \preceq}$ be a lattice.

Let $F \subseteq S$ be a non-empty subset of $S$.


The following definitions of the concept of Lattice Filter are equivalent:

Definition 1

$F$ is a lattice filter of $S$ if and only if $F$ satisifes the lattice filter axioms:

\((\text {LF 1})\)   $:$   $F$ is a sublattice of $S$:      \(\ds \forall x, y \in F:\) \(\ds x \wedge y, x \vee y \in F \)      
\((\text {LF 2})\)   $:$     \(\ds \forall x \in F: \forall a \in S:\) \(\ds x \vee a \in F \)      


Definition 2

$F$ is a lattice filter of $S$ if and only if $F$ is a meet semilattice filter.


Proof

Definition 1 implies Definition 2

Let $F$ satisify the lattice filter axioms.

To show that $F$ is a meet semilattice filter it is sufficient to show:

$F$ is a upper section of $S$:      \(\ds \forall x \in F: \forall y \in S:\) \(\ds x \preceq y \implies y \in F \)      


Let $x \in F, y \in S : x \preceq y$.

By the lattice filter axioms, $F$ is a sublattice of $\struct {S, \vee, \wedge, \preceq}$, so:

$x \vee y \in F$

From Preceding iff Join equals Larger Operand:

$y = x \vee y$

Hence:

$y \in F$

The result follows.

$\Box$


Definition 2 implies Definition 1

Let $F$ be a meet semilattice filter of $\struct {S, \wedge, \preceq}$.

To show that $F$ is a lattice filter of $\struct {S, \vee, \wedge, \preceq}$ it is sufficient to show:

$\forall x \in F, a \in S: x \vee a \in F$


Let $x \in F, a \in S$.

By definition of join:

$x \preceq x \vee a$

By definition of meet semilattice filter, $F$ is an upper section, so:

$x \vee a \in F$

The result follows.

$\blacksquare$