Equivalence of Definitions of Legendre Symbol

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $p$ be an odd prime.

Let $a \in \Z$.


The following definitions of the concept of Legendre Symbol are equivalent:

Definition 1

The Legendre symbol $\paren {\dfrac a p}$ is defined as:

$\paren {\dfrac a p} := \begin{cases} +1 & : a^{\frac {\paren {p - 1} } 2} \bmod p = 1 \\

0 & : a^{\frac {\paren {p - 1} } 2} \bmod p = 0 \\ -1 & : a^{\frac {\paren {p - 1} } 2} \bmod p = p - 1 \end{cases}$

Definition 2

The Legendre symbol $\paren {\dfrac a p}$ is defined as:

   \(\ds 0 \) if $a \equiv 0 \pmod p$      
   \(\ds +1 \) if $a$ is a quadratic residue of $p$      
   \(\ds -1 \) if $a$ is a quadratic non-residue of $p$      


Proof