Equivalence of Definitions of Symmetric Difference/(1) iff (2)
Jump to navigation
Jump to search
Theorem
Let $S$ and $T$ be sets.
The following definitions of the concept of symmetric difference $S \symdif T$ between $S$ and $T$ are equivalent:
Definition 1
- $S \symdif T := \paren {S \setminus T} \cup \paren {T \setminus S}$
Definition 2
- $S \symdif T = \paren {S \cup T} \setminus \paren {S \cap T}$
Proof
\(\ds S \symdif T\) | \(=\) | \(\ds \paren {S \setminus T} \cup \paren {T \setminus S}\) | Definition 1 of Symmetric Difference | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\paren {S \cup T} \setminus T} \cup \paren {\paren {S \cup T} \setminus S}\) | Set Difference with Union is Set Difference | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {S \cup T} \setminus \paren {T \cap S}\) | De Morgan's Laws: Difference with Intersection | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {S \cup T} \setminus \paren {S \cap T}\) | Intersection is Commutative |
$\blacksquare$
Sources
- 1964: W.E. Deskins: Abstract Algebra ... (previous) ... (next): Exercise $1.1: \ 8 \ \text{(g)}$
- 1968: A.N. Kolmogorov and S.V. Fomin: Introductory Real Analysis ... (previous) ... (next): $\S 1$: Sets and Functions: Problem $4 \ \text{(b)}$
- 1971: Allan Clark: Elements of Abstract Algebra ... (previous) ... (next): Chapter $1$: The Notation and Terminology of Set Theory: $\S 8 \alpha$
- 1975: T.S. Blyth: Set Theory and Abstract Algebra ... (previous) ... (next): $\S 1$. Sets; inclusion; intersection; union; complementation; number systems: Exercise $14$