Equivalent Cauchy Sequences have Equal Limits of Norm Sequences
Jump to navigation
Jump to search
Theorem
Let $\struct {R, \norm {\, \cdot \,} }$ be a normed division ring.
Let $\sequence {x_n}$ and $\sequence {y_n}$ be Cauchy sequences in $R$.
Let $\ds \lim_{n \mathop \to \infty} {x_n - y_n} = 0$.
Then:
- $\ds \lim_{n \mathop \to \infty} \norm {x_n} = \lim_{n \mathop \to \infty} \norm {y_n}$
Proof
Let:
- $l = \ds \lim_{n \mathop \to \infty} \norm {x_n}$
and:
- $m = \ds \lim_{n \mathop \to \infty} \norm {y_n}$
By Norm Sequence of Cauchy Sequence has Limit, both of these limits exist.
Then:
\(\ds \lim_{n \mathop \to \infty } \paren {\norm {x_n} - \norm {y_n} }\) | \(=\) | \(\ds l - m\) | Difference Rule for Real Sequences | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \lim_{n \mathop \to \infty} \size {\norm {x_n} - \norm {y_n} }\) | \(=\) | \(\ds \size {l - m}\) | Modulus of Limit |
By Reverse Triangle Inequality on Normed Division Ring, for $n \in \N$:
- $l = \size {\norm {x_n} - \norm {y_n} } \le \norm {x_n - y_n} = \to 0$
as $n \to \infty$.
By the Squeeze Theorem:
- $\ds \lim_{n \mathop \to \infty} \paren {\size {\norm {x_n} - \norm {y_n} } } = 0$
So:
- $\size {l - m} = 0$
and therefore: $l = m$
$\blacksquare$