Error Function is Odd

From ProofWiki
Jump to navigation Jump to search

Theorem

$\map \erf {-x} = -\map \erf x$

where:

$\erf$ denotes the error function
$x$ is a real number.


Proof

\(\ds \map \erf {-x}\) \(=\) \(\ds \frac 2 {\sqrt \pi} \int_0^{-x} e^{-u^2} \rd u\) Definition of Error Function
\(\ds \) \(=\) \(\ds -\frac 2 {\sqrt \pi} \int_0^{-\paren {-x} } e^{-\paren {-u}^2} \rd u\) substituting $u \mapsto -u$
\(\ds \) \(=\) \(\ds -\frac 2 {\sqrt \pi} \int_0^x e^{-u^2} \rd u\)
\(\ds \) \(=\) \(\ds -\map \erf x\) Definition of Error Function

$\blacksquare$


Sources