Error Function is Odd
Jump to navigation
Jump to search
Theorem
- $\map \erf {-x} = -\map \erf x$
where:
- $\erf$ denotes the error function
- $x$ is a real number.
Proof
\(\ds \map \erf {-x}\) | \(=\) | \(\ds \frac 2 {\sqrt \pi} \int_0^{-x} e^{-u^2} \rd u\) | Definition of Error Function | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac 2 {\sqrt \pi} \int_0^{-\paren {-x} } e^{-\paren {-u}^2} \rd u\) | substituting $u \mapsto -u$ | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac 2 {\sqrt \pi} \int_0^x e^{-u^2} \rd u\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -\map \erf x\) | Definition of Error Function |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 35$: Error Function $\ds \map \erf x = \frac 2 {\sqrt \pi} \int_0^x e^{-u^2} \rd u$: $35.3$