Euler's Tangent Identity/Formulation 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $z$ be a complex number.

Let $\tan z$ denote the tangent function and $i$ denote the imaginary unit: $i^2 = -1$.

Then:

$\tan z = i \dfrac {1 - e^{2 i z} } {1 + e^{2 i z} }$


Proof

\(\ds \tan z\) \(=\) \(\ds \frac {\sin z} {\cos z}\) Definition of Complex Tangent Function
\(\ds \) \(=\) \(\ds \frac {\frac 1 2 i \paren {e^{-i z} - e^{i z} } }
                 {\frac 1 2 \paren {e^{-i z} + e^{i z} } }\)
Euler's Sine Identity and Euler's Cosine Identity
\(\ds \) \(=\) \(\ds i \frac {e^{-i z} - e^{i z} }
                   {e^{-i z} + e^{i z} }\)
\(\ds \) \(=\) \(\ds i \frac {1 - e^{2 i z} }
                   {1 + e^{2 i z} }\)
multiplying numerator and denominator by $e^{i z}$

$\blacksquare$