Euler's Tangent Identity/Formulation 3

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $z$ be a complex number.

Let $\tan z$ denote the tangent function and $i$ denote the imaginary unit: $i^2 = -1$.

Then:

$\tan z = -i \paren {\dfrac {e^{i z} - e^{-i z} } {e^{i z} + e^{-i z} } }$


Proof

\(\ds \tan z\) \(=\) \(\ds \frac {\sin z} {\cos z}\) Definition of Complex Tangent Function
\(\ds \) \(=\) \(\ds \frac {e^{i z} - e^{-i z} } {i \paren {e^{i z} + e^{-i z} } }\) Euler's Tangent Identity: Formulation 2
\(\ds \) \(=\) \(\ds -i \paren {\dfrac {e^{i z} - e^{-i z} } {e^{i z} + e^{-i z} } }\) multiplying numerator and denominator by $-i$

$\blacksquare$


Sources