Euler-Binet Formula/Corollary 2
Jump to navigation
Jump to search
Corollary to Euler-Binet Formula
For even $n$:
- $F_n < \dfrac {\phi^n} {\sqrt 5}$
For odd $n$:
- $F_n > \dfrac {\phi^n} {\sqrt 5}$
where:
- $F_n$ denotes the $n$th Fibonacci number
- $\phi$ denotes the golden mean.
Proof
From Euler-Binet Formula:
- $F_n = \dfrac {\phi^n - \hat \phi^n} {\sqrt 5} = \dfrac {\phi^n} {\sqrt 5} - \dfrac {\hat \phi^n} {\sqrt 5}$
We have that:
- $\hat \phi = -\dfrac 1 \phi$
and so:
- $\hat \phi^n = \paren {-1}^n \dfrac 1 {\phi^n}$
$\phi > 0$ and so $\dfrac 1 {\phi^n} > 0$ for all $n$.
For even $n$:
- $\paren {-1}^n = 1$
and so:
- $\hat \phi^n > 0$
Thus:
- $\dfrac {\phi^n} {\sqrt 5} - \dfrac {\hat \phi^n} {\sqrt 5} < \dfrac {\phi^n} {\sqrt 5}$
and so $F_n < \dfrac {\phi^n} {\sqrt 5}$.
For odd $n$:
- $\paren {-1}^n = -1$
and so:
- $\hat \phi^n < 0$
Thus:
- $\dfrac {\phi^n} {\sqrt 5} - \dfrac {\hat \phi^n} {\sqrt 5} > \dfrac {\phi^n} {\sqrt 5}$
and so $F_n > \dfrac {\phi^n} {\sqrt 5}$.
$\blacksquare$
Sources
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.8$: Fibonacci Numbers: Exercise $10$