Expectation of Beta Distribution/Proof 2
Jump to navigation
Jump to search
Theorem
Let $X \sim \BetaDist \alpha \beta$ for some $\alpha, \beta > 0$, where $\operatorname{Beta}$ denotes the beta distribution.
Then:
- $\expect X = \dfrac \alpha {\alpha + \beta}$
Proof
\(\ds \expect X\) | \(=\) | \(\ds \prod_{r \mathop = 0}^0 \frac {\alpha + r} {\alpha + \beta + r}\) | Raw Moment of Beta Distribution | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\alpha + 0} {\alpha + \beta + 0}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac \alpha {\alpha + \beta}\) |
$\blacksquare$