Expectation of Exponential Distribution/Proof 2
Jump to navigation
Jump to search
Theorem
Let $X$ be a continuous random variable of the exponential distribution with parameter $\beta$ for some $\beta \in \R_{> 0}$
Then the expectation of $X$ is given by:
- $\expect X = \beta$
Proof
From Moment Generating Function of Exponential Distribution, the moment generating function $M_X$ of $X$, is given by:
- $\map {M_X} t = \dfrac 1 {1 - \beta t}$
By Moment in terms of Moment Generating Function:
- $\expect X = \map {M_X'} 0$
We have:
\(\ds \map {M_X'} t\) | \(=\) | \(\ds \map {\frac \d {\d t} } {\frac 1 {1 - \beta t} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {-\beta} {-1} \frac 1 {\paren {1 - \beta t}^2}\) | Chain Rule for Derivatives, Derivative of Power | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac \beta {\paren {1 - \beta t}^2}\) |
Setting $t = 0$ gives:
\(\ds \expect X\) | \(=\) | \(\ds \frac \beta {\paren {1 - 0 \beta}^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \beta\) |
$\blacksquare$
Sources
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): moment generating function
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): moment generating function