Expression for bilinear function
![]() | It has been suggested that this page be renamed. In particular: Capitalisation and precision To discuss this page in more detail, feel free to use the talk page. |
Theorem
Let $f$ be a real function of two independent variables, $f \in \R \times \R \to \R$.
Then:
- $\map f {x, y}$ is a linear function of $x$ when $y$ is equal to a real constant
- $\map f {x, y}$ is a linear function of $y$ when $x$ is equal to a real constant
if and only if $f$ has the form:
- $\exists a, b, c, d \in \R: \forall {x, y} \in \R: \map f {x, y} = a x y + b x + c y + d$
Proof
Sufficient Condition
Let:
- $\map f {x, y}$ be a linear function of $x$ when $y$ is equal to a real constant
- $\map f {x, y}$ be a linear function of $y$ when $x$ is equal to a real constant
We need to show that:
- $\exists a, b, c, d \in \R: \forall {x, y} \in \R: \map f {x, y} = a x y + b x + c y + d$
Expressions for $\map f {x, y}$ when either $x$ or $y$ is constant
We have:
- $\map f {x, y}$ is a linear function of $x$ when $y$ is equal to a real constant.
This means that:
- $\exists \alpha, \beta, y \in \R: \forall x \in \R: \map f {x, y} = \alpha x + \beta$
The real constants $\alpha$ and $\beta$ may depend on $y$ as $y$ is constant.
In other words:
- $\forall {x, y} \in \R: \map f {x, y} = \map {a_1} y x + \map {a_2} y$
where $a_1$ and $a_2$ are real functions, $a_1, a_2 \in \R \to \R$.
By symmetry, we find from:
- $\map f {x, y}$ is a linear function of $y$ when $x$ is equal to a real constant
that:
- $\forall {x, y} \in \R: \map f {x, y} = \map {b_1} x y + \map {b_2} x$
where $b_1$ and $b_2$ are real functions, $b_1, b2 \in \R \to \R$.
$\Box$
Expression for $\map f {x, y}$ for every value of $x$ and $y$
We have:
\(\ds \forall {x, y} \in \R: \map f {x, y}\) | \(=\) | \(\ds \map {a_1} y x + \map {a_2} y\) | ||||||||||||
\(\, \ds \land \, \) | \(\ds \forall {x, y} \in \R: \map f {x, y}\) | \(=\) | \(\ds \map {b_1} x y + \map {b_2} x\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \forall {x, y} \in \R: \map {a_1} y x + \map {a_2} y\) | \(=\) | \(\ds \map {b_1} x y + \map {b_2} x\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \forall x \in \R: \map {a_1} 0 x + \map {a_2} 0\) | \(=\) | \(\ds \map {b_2} x\) | $y = 0$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \forall x \in \R: \map {b_2} x\) | \(=\) | \(\ds \map {a_1} 0 x + \map {a_2} 0\) |
In other words, $b_2$ is a linear function of $x$.
We have:
\(\ds \forall {x, y} \in \R: \map {a_1} y x + \map {a_2} y\) | \(=\) | \(\ds \map {b_1} x y + \map {b_2} x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \forall {x, y} \in \R: \map {a_1} y x + \map {a_2} y\) | \(=\) | \(\ds \map {b_1} x y + \map {a_1} 0 x + \map {a_2} 0\) | $\map {b_2} x = \map {a_1} 0 x + \map {a_2} 0$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \forall x \in \R: \map {a_1} 1 x + \map {a_2} 1\) | \(=\) | \(\ds \map {b_1} x + \map {a_1} 0 x + \map {a_2} 0\) | $y = 1$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \forall x \in \R: \map {b_1} x\) | \(=\) | \(\ds \map {a_1} 1 x + \map {a_2} 1 - \paren {\map {a_1} 0 x + \map {a_2} 0}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \forall x \in \R: \map {b_1} x\) | \(=\) | \(\ds \paren {\map {a_1} 1 - \map {a_1} 0} x + \map {a_2} 1 - \map {a_2} 0\) |
In other words, $b_1$ is a linear function of $x$.
In conclusion, we have:
\(\ds \forall {x, y} \in \R: \map f {x, y}\) | \(=\) | \(\ds \map {b_1} x y + \map {b_2} x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \forall {x, y} \in \R: \map f {x, y}\) | \(=\) | \(\ds \map {b_1} x y + \map {a_1} 0 x + \map {a_2} 0\) | $\map {b_2} x = \map {a_1} 0 x + \map {a_2} 0$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \forall {x, y} \in \R: \map f {x, y}\) | \(=\) | \(\ds \paren {\paren {\map {a_1} 1 - \map {a_1} 0} x + \map {a_2} 1 - \map {a_2} 0} y + \map {a_1} 0 x + \map {a_2} 0\) | $\map {b_1} x = \paren {\map {a_1} 1 - \map {a_1} 0} x + \map {a_2} 1 - \map {a_2} 0$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \forall {x, y} \in \R: \map f {x, y}\) | \(=\) | \(\ds \paren {\map {a_1} 1 - \map {a_1} 0} x y + \paren {\map {a_2} 1 - \map {a_2} 0} y + \map {a_1} 0 x + \map {a_2} 0\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \forall {x, y} \in \R: \map f {x, y}\) | \(=\) | \(\ds \paren {\map {a_1} 1 - \map {a_1} 0} x y + \map {a_1} 0 x + \paren { \map {a_2} 1 - \map {a_2} 0} y + \map {a_2} 0\) |
This expression for $\map f {x, y}$ is of the sought for form:
- $\exists {a, b, c, d} \in \R: \forall {x, y} \in \R: \map f {x, y} = a x y + b x + c y + d$
$\Box$
Necessary Condition
Let:
- $\exists {a, b, c, d} \in \R: \forall {x, y} \in \R: \map f {x, y} = a x y + b x + c y + d$
We need to show that:
- $\map f {x, y}$ is a linear function of $x$ when $y$ is equal to a real constant
- $\map f {x, y}$ is a linear function of $y$ when $x$ is equal to a real constant
Let:
We have:
\(\ds \exists {a, b, c, d} \in \R: \forall {x, y} \in \R: \map f {x, y}\) | \(=\) | \(\ds a x y + b x + c y + d\) | ||||||||||||
\(\, \ds \land \, \) | \(\ds y\) | \(=\) | \(\ds \text {a real constant}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \exists {a, b, c, d, y} \in \R: \forall x \in \R: \map f {x, y}\) | \(=\) | \(\ds a x y + b x + c y + d\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \exists {a, b, c, d, y} \in \R: \forall x \in \R: \map f {x, y}\) | \(=\) | \(\ds \paren {a y + b} x + c y + d\) |
So, $\map f {x, y}$ is a linear function of $x$ as $a y + b$ and $c y + d$ are constant.
Now, let:
We have:
\(\ds \exists a, b, c, d \in \R: \forall {x, y} \in \R: \map f {x, y}\) | \(=\) | \(\ds a x y + b x + c y + d\) | ||||||||||||
\(\, \ds \land \, \) | \(\ds x\) | \(=\) | \(\ds \text {a real constant}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \exists {a, b, c, d, x} \in \R: \forall y \in \R: \map f {x, y}\) | \(=\) | \(\ds a x y + b x + c y + d\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \exists {a, b, c, d, x} \in \R: \forall y \in \R: \map f {x, y}\) | \(=\) | \(\ds \paren {a x + c} y + b x + d\) |
So, $\map f {x, y}$ is a linear function of $y$ as $a x + c$ and $b x + d$ are constant.
Hence the result.
$\blacksquare$